
sibreg Documentation

Alexander Young

Mar 30, 2022

CONTENTS:

1 Tutorial 1
1.1 Test data . 1
1.2 Inferring IBD between siblings . 1
1.3 Imputing missing parental genotypes . 2
1.4 Family based GWAS . 3
1.5 Polygenic score analyses . 4

2 Guide 7

3 sibreg.bin package 9
3.1 Submodules . 9
3.2 sibreg.bin.impute_from_sibs module . 9
3.3 sibreg.bin.impute_from_sibs_hdf5 module . 9
3.4 sibreg.bin.impute_from_sibs_setup module . 9
3.5 sibreg.bin.impute_po module . 9
3.6 sibreg.bin.impute_runner module . 9
3.7 sibreg.bin.make_rdr_grms module . 9
3.8 sibreg.bin.pGWAS module . 9
3.9 sibreg.bin.poGWAS module . 9
3.10 sibreg.bin.preprocess_data module . 9
3.11 sibreg.bin.sGWAS module . 9
3.12 sibreg.bin.triGWAS module . 9
3.13 Module contents . 9

4 Indices and tables 11

Python Module Index 13

Index 15

i

ii

CHAPTER

ONE

TUTORIAL

Tutorial on inferring IBD between siblings, imputing missing parental genotypes, and performing family based GWAS
and polygenic score analyses. Before working through the tutorial, please first install the package and run the tests (see
github).

1.1 Test data

In the example/ directory, there is some example data. The file h2_quad_0.8.txt is a simulated phenotype with direct,
paternal, and maternal effects, where 80% of the phenotypic variance is explained by the combined direct, paternal and
maternal effects of the SNPs; and the pairwise correlations between the direct, paternal, and maternal effects are 0.5.

The genotype data has been simulated so that there are 3000 independent families, where 1000 have two siblings but
no parents genotyped, 1000 have one parent genotyped and a 50% chance of having a genotyped sibling, and the
final 1000 have both parents genotyped and a 50% chance of having a genotyped sibling. The example data includes
genotype data formatted in both PLINK .bed format (example/sample.bed) and phased genotype data in .bgen format
(example/sample.bgen with associated sample file example/sample.sample).

1.2 Inferring IBD between siblings

The first step is to infer the identity-by-descent segments shared between siblings. SNIPar contains a script, ibd.py, that
employs a Hidden Markov Model (HMM) to infer the IBD segments for the sibling pairs. To infer the IBD segments
from the genotype data in example/sample.bed, use the following command

python ibd.py example/sample --king example/sample.king.kin0 --agesex example/
sample.agesex --map example/sample.genetic_map.txt --outprefix example/
--threads 4

This will output the IBD segments to a gzipped text file example/chr_1.ibd.segments.gz. The –king argument requires
the address of the relations (parent-offspring, sibling) inferred by KING by using the –related command, and the –agesex
argument requires the address of a white-space separated text file with column ‘FID’ (family ID), ‘IID’ (individual
ID), ‘age’, ‘sex’ (coded as ‘M’ for male and ‘F’ for female). It is necessary to provide the genetic map positions in
centiMorgans (cM) of the SNPs: the –map argument allows the user to specify a genetic map (in the same format
as used by SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html#formats); otherwise, the
script can use the genetic map positions (in cM) provided by the bim file. The –threads argument controls the number
of threads used for computation.

If the user has a pedigree file with columns FID (family ID), IID (individual ID), FATHER_ID (father ID),
MOTHER_ID (mother ID), they can input that instead of the –king and –agesex arguments. Missing IDs in the pedi-
gree are denoted by 0. Siblings are inferred as individuals in the pedigree that share both parents. Using the example
pedigree in example/sample.ped, you can infer IBD using this command:

1

https://github.com/AlexTISYoung/SNIPar
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html#formats

sibreg Documentation

python ibd.py example/sample --pedigree example/sample.ped --map example/
sample.genetic_map.txt --outprefix example/ --threads 4

While the script can be run for a .bed file containing a single chromosome, it can also be run for multiple bed files
each containing a single chromosome. If the bed files are chr_1.bed, chr_2.bed, . . . , chr_22.bed, then you can specify
these files to the script as ‘chr_~’, where ‘~’ is interpreted as a numerical wildcard character. The script first infers a
genotyping error probability from Mendelian Errors between parents and offspring across all the input chromosomes,
then it will infer the IBD segments shared between siblings for each chromosome.

The IBD inference can be performed on a smaller set of SNPs than will be imputed to save computation time. For
example, IBD inference could be performed using SNPs from a genotyping array, and the imputation performed using
all SNPs that have been imputed from a reference panel. For imputation from siblings, SNPs that fall outside of regions
covered by the IBD segments will be imputed as missing values.

1.3 Imputing missing parental genotypes

To impute the missing parental genotypes without using phase information, type:

python impute_runner.py example/chr_1.ibd --bed example/sample --king example/
sample.king.kin0 --agesex example/sample.agesex --output_address example/sample
--threads 4 --snipar_ibd

The script constructs a pedigree from the output of KING’s relatedness inference (example/sample.king), and age and
sex information (example/sample.agesex). The pedigree along with the IBD segments shared between siblings recorded
in example/chr_1.ibd.segments.gz are used to impute missing parental genotypes from the observed sibling and parental
genotypes in example/sample1.bed. The imputed parental genotypes are in a HDF5 file example/sample.hdf5. The
–snipar_ibd flag indicates the IBD segments are formatted as output by SNIPar.

If phased haplotypes are available in .bgen format, the imputation can use these as input, which improves the information
gained by imputation in certain situations. To perform imputation from the phased .bgen file in example/, use the
following command:

python impute_runner.py example/chr_1.ibd --bgen example/sample --king example/
sample.king.kin0 --agesex example/sample.agesex --output_address example/sample
--threads 4 --from_chr 1 --to_chr 2 --snipar_ibd

It is necessary to provide the –from_chr and –to_chr arguments when imputing from .bgen files since they often do not
contain information on which chromosome the SNPs are located on, and we need to match up the IBD segments to the
SNPs on the same chromosome.

To use IBD segments output by KING (example/sample.king.segments.gz), use the following command:

python impute_runner.py example/sample.king --bgen example/sample --king
example/sample.king.kin0 --agesex example/sample.agesex --output_address
example/sample --threads 4 --from_chr 1 --to_chr 2

As with the ibd.py script, the impute_runner.py script can use a user input pedigree (with the –pedigree argument)
rather than the –king and –agesex arguments.

2 Chapter 1. Tutorial

sibreg Documentation

1.4 Family based GWAS

To compute summary statistics for direct, paternal, and maternal effects for all SNPs in the .bed file, type:

python fGWAS.py example/sample example/h2_quad_0.8.txt --outprefix example/
h2_quad_0.8 --bed example/sample

This takes the observed genotypes in example/sample.bed and the imputed parental genotypes in example/sample.hdf5
and uses them to perform, for each SNP, a joint regression onto the proband’s genotype, the father’s (imputed) geno-
type, and the mother’s (imputed) genotype. This is done using a random effects model that models phenotypic cor-
relations between siblings, where sibling relations in the pedigree are stored in the output of the imputation script:
example/sample.hdf5. The ‘family variance estimate’ output is the phenotypic variance explained by mean differences
between sibships, and the residual variance is the remaining phenotypic variance.

To use the .bgen file instead, type:

python fGWAS.py example/sample example/h2_quad_0.8.txt --outprefix example/
h2_quad_0.8 --bgen example/sample

The script outputs summary statistics in a gzipped text file: h2_quad_0.8.sumstats.gz. This file gives the chromosome,
SNP id, position, alleles (A1, the allele that effects are given with respect to; and A2, the alternative allele), the fre-
quency of the A1 allele, then summary statistics for each type of effect. For each effect, we give the effective N for
each SNP; this differs from the actual N due to the fact that there are differing amounts of information for each type of
effect, and due to relatedness in the sample. We give the effect estimate in the first column for each effect, the column
‘effect_Beta’, where ‘effect’ can be direct, paternal, etc; this is followed by the standard error, the Z-score, and the
negative log10 P-value for a non-zero effect. In addition to effects directly estimated by the script, we also output the
average parental effect estimate (estimate of the average of maternal and paternal effects), and the population effect
estimate, which is equivalent to what is estimated by standard GWAS methods that regress phenotype onto genotype
without control for parental genotypes. The final columns give the sampling correlations between the different effect
estimates at that SNP.

In addition to the plain text output, the effects and their sampling variance-covariance matrices are output in exam-
ple/h2_quad_0.8.sumstats.hdf5. The contents of the HDF5 file can be read into Python (using h5py) and R (using
rhdf5) easily. The output contains different datasets:

1. estimate, the estimated SNP effect, where each row gives a SNP, and each column gives an effect

2. bim, equivalent to the bim file for plink, recording the information on each SNP

3. estimate_cols, gives the names of the effects estimate for each SNP: direct, paternal, maternal, etc.

4. estimate_ses, the standard errors for the effect estimates in estimate

5. estimate_covariance, 3 dimensional array with sampling variance-covariance matrices for each SNP’s estimated
effects, with SNPs indexed by the first axis

6. freqs, frequencies of the effect alleles

7. sigma2, maximum likelihood estimate of the residual variance in the null model

8. tau, maximum likelihood estimate of the ratio between the residual variance and family variance

9. N, the sample size

10. NAs, the number of missing values for each of SNPs, given for each relative in the regression (individual, father,
mother, etc.)

Now we have estimated SNP specific summary statistics. To compare to the true effects, run

python example/estimate_sim_effects.py example/h2_quad_0.8.sumstats.hdf5
example/h2_quad_0.8.effects.txt

1.4. Family based GWAS 3

https://www.h5py.org
https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html

sibreg Documentation

This should print estimates of the bias of the effect estimates.

The bias estimates for direct, paternal, maternal, and average parental effects should not be statistically significantly
different from zero (with high probability). Population effects (which are estimated by univariate regression of indi-
viduals’ phenotypes onto their genotypes – as in standard GWAS) here are biased estimates of direct effects, since
population effects include both direct and indirect parental effects.

If the imputation has been performed from siblings alone, then the regression onto proband (focal, phenotyped indi-
vidual), imputed paternal, and imputed maternal becomes collinear. This is because the imputation is the same for
paternal and maternal genotypes. In this case, the regression should be performed onto proband and sum of imputed
paternal and maternal genotypes. This can be achieved by providing the –parsum option to the script. The script can
also estimate indirect sibling effects for each SNP by providing the –fit_sib option; however, this will reduce power for
estimating other effects.

1.5 Polygenic score analyses

In addition to family based GWAS, SNIPar provides a script (fPGS.py) for computing polygenic scores (PGS) based on
observed/imputed genotypes, and for performing family based polygenic score analyses. Here, we give some examples
of how to use this script. The script computes a PGS from weights provided in LD-pred format . The true direct genetic
effects for the simulated trait are given as PGS weights in this format in example/h2_quad_0.8.direct_weights.txt. This
is a tab-delimited text file with a header and columns ‘chrom’ (chromosome), ‘pos’ (position), ‘sid’ (SNP ID), ‘nt1’
(allele 1), ‘nt2’ (allele 2), ‘raw_beta’ (raw effect estimates), ‘ldpred_beta’ (LD-pred adjusted weight). The script uses
as weights the ‘ldpred_beta’ column.

To compute the PGS from the true direct effects, use the following command:

python fPGS.py example/direct --bedfiles example/sample --impfiles example/
sample --weights example/h2_quad_0.8.direct_weights.txt

This uses the weights in the weights file to compute the polygenic scores for each genotyped individual for whom ob-
served or imputed parental genotypes are available. It outputs the PGS to example/direct.pgs.txt, which is a white-space
delimited text file with columns FID (family ID, shared between siblings), IID (individual ID), proband (PGS of indi-
vidual with given IID), maternal (observed or imputed PGS of that individual’s mother), paternal (observed or imputed
PGS of that individual’s father). The script also supports bed files and imputed files split by chromosome. If you had
bed files as chr_1.bed, chr_2.bed, . . . , chr_22.bed; and imputed parental genotype files as chr_1.hdf5, chr_2.hdf5, . . . ,
chr_22.hdf5, then you can specify this in a command as:

--bedfiles chr_~ --impfiles chr_~

The script looks for all files that match the path given with ‘~’ replaced by 1,2,. . . ,22: chr_1.bed & chr_1.hdf5, chr_2.bed
& chr_2.hdf5, etc. To use .bgen input, replace the –bedfiles argument with –bgenfiles.

To estimate direct, paternal, and maternal effects of the PGS, use the following command:

python fPGS.py example/direct --pgs example/direct.pgs.txt --phenofile example/
h2_quad_0.8.txt

This uses a linear mixed model that has a random effect for mean differences between families (defined as sibships
here) and fixed effects for the direct, paternal, and maternal effects of the PGS. It also estimates the ‘population’ effect
of the PGS: the effect from regression of individuals’ phenotypes onto their PGS values. The estimated effects and
their standard errors are output to example/direct.pgs_effects.txt, with the effect names (direct, paternal, maternal,
population) in the first column, their estimates in the second column, and their standard errors in the final column. The
sampling variance-covariance matrix of direct, paternal, and maternal effects is output in example/direct.pgs_vcov.txt.

Estimates of the direct effect of the PGS should be equal to 1 in expectation since we are using the true direct effects
as the weights, so the PGS corresponds to the true direct effect component of the trait. The parental effect estimates
capture the correlation between the direct and indirect parental effects. The population effect estimate should be greater

4 Chapter 1. Tutorial

https://github.com/bvilhjal/ldpred

sibreg Documentation

than 1, since this captures both the direct effect of the PGS, and the correlation between direct and indirect parental
effects.

If parental genotypes have been imputed from sibling data alone, then imputed paternal and maternal PGS are perfectly
correlated, and the above regression on proband, paternal, and maternal PGS becomes co-linear. To deal with this, add
the –parsum option to the above command, which will estimate the average parental effect rather than separate maternal
and paternal effects of the PGS.

It is also possible to estimate indirect effects from siblings. We can compute the PGS for genotyped individuals with
genotyped siblings and estimate direct, indirect sibling, paternal and maternal effects in one command with the addition
of the –fit_sib option:

python fPGS.py example/direct_sib --bedfiles example/sample --impfiles example/
sample --weights example/h2_quad_0.8.direct_weights.txt --phenofile example/
h2_quad_0.8.txt --fit_sib

This outputs the PGS values for each individual along with the PGS value of their sibling, and imputed/observed
paternal and maternal PGS to example/direct_sib.pgs.txt. (If an individual has multiple genotyped siblings, the average
of the siblings’ PGS is used for the PGS of the sibling.) It outputs estimates of direct, indirect sibling, paternal, and
maternal effects of the PGS to example/direct_sib.pgs_effects.txt and their sampling variance-covariance matrix to
example/direct_sib.pgs_vcov.txt. Since indirect effects from siblings were zero in this simulation, the estimated sibling
effect should be close to zero.

Note that the standard error for the direct effect estimate increases: this is due both to a drop in sample size since only
those probands with genotyped siblings are included, and due to the fact that adding the sibling effect to the regression
decreases the independent information on the direct effect.

1.5. Polygenic score analyses 5

sibreg Documentation

6 Chapter 1. Tutorial

CHAPTER

TWO

GUIDE

Introduction

SNIPar (single nucleotide imputation of parents) is a python library for imputing missing parental genotypes from
observed genotypes in a nuclear family, and for performing family based genome-wide association and polygenic score
analyses using the resulting imputed parental genotypes.

In the main SNIPar directory, there is a script for imputing missing parental genotypes (impute_runner.py).

The script outputs expected genotypes of missing parents, which are used as input for the fGWAS.py script that perform
family based GWAS using observed and imputed parental genotypes.

The impute_runner.py script takes un-phased genotypes in .bed format, and phased haplotypes in .bgen format. The
imputation becomes more efficient when using phased haplotypes, at the cost of slower runtime. The script requires IBD
segments in the KING (https://people.virginia.edu/~wc9c/KING/manual.html) format as input, where IBD segments
shared between first-degree relatives are used. This can be computed by using –ibdseg –degree 1 options in KING.

The script will construct a pedigree for you if you provide it with the KING relatedness inference (output using the
–related –degree 1 options) and age & sex information. Alternatively, a user-input pedigree can be provided. Providing
the script with KING output is recommended since this ensures the pedigree is constructed in the correct way.

The pedigree file is a plain text file with header and columns: FID (family ID), IID (individual ID), FATHER_ID (ID
of father), MOTHER_ID (ID of mother).

Note that individuals are assumed to have unique individual IDS (IID).

Siblings are identified through individuals that have the same FID.

We recommend working through the tutorial (https://github.com/AlexTISYoung/SNIPar/edit/master/docs/tutorial.rst)
to get an idea of the workflow required for a full analysis.

Family based GWAS is performed using the fGWAS.py script, which uses a linear mixed model with a random-effect
that models correlations between individuals with the same family ID to estimate direct and indirect effects for genome-
wide SNPs.

Polygenic score analyses are performed using the fPGS.py script, which computes polygenic scores for individuals and
their first degree relatives based on observed/imputed genotypes. It also estimates direct and indirect effects of the
polygenic score in the linear mixed model.

*Package Install Instructions

SNIPar has the following dependencies:

python 3.7

Packages:

• h5py

• bgen-reader

7

https://people.virginia.edu/~wc9c/KING/manual.html
https://github.com/AlexTISYoung/SNIPar/edit/master/docs/tutorial.rst

sibreg Documentation

• numpy

• scipy

• pysnptools

• pandas

• networkx

• Cython

We highly recommend using a python distribution such as Anaconda 3 (https://store.continuum.io/cshop/anaconda/).
This will come with both numpy and scipy installed and can include an MKL-compiled distribution for optimal speed.

To install from source, clone the git repository, and in the directory containing the SNIPar source code, at the shell type

‘python setupy.py install’

‘python setup.py build_ext –inplace’

Running tests

To check that the code is working properly and that the C modules have compiled, you should run tests. To run the
tests, in the main SNIPar directory enter the command:

python setup.py pytest

8 Chapter 2. Guide

https://store.continuum.io/cshop/anaconda/

CHAPTER

THREE

SIBREG.BIN PACKAGE

3.1 Submodules

3.2 sibreg.bin.impute_from_sibs module

3.3 sibreg.bin.impute_from_sibs_hdf5 module

3.4 sibreg.bin.impute_from_sibs_setup module

3.5 sibreg.bin.impute_po module

3.6 sibreg.bin.impute_runner module

3.7 sibreg.bin.make_rdr_grms module

3.8 sibreg.bin.pGWAS module

3.9 sibreg.bin.poGWAS module

3.10 sibreg.bin.preprocess_data module

3.11 sibreg.bin.sGWAS module

3.12 sibreg.bin.triGWAS module

3.13 Module contents

Contains the main code for the imputations.

9

sibreg Documentation

10 Chapter 3. sibreg.bin package

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

11

sibreg Documentation

12 Chapter 4. Indices and tables

PYTHON MODULE INDEX

s
sibreg.bin, 9

13

sibreg Documentation

14 Python Module Index

INDEX

M
module

sibreg.bin, 9

S
sibreg.bin
module, 9

15

	Tutorial
	Test data
	Inferring IBD between siblings
	Imputing missing parental genotypes
	Family based GWAS
	Polygenic score analyses

	Guide
	sibreg.bin package
	Submodules
	sibreg.bin.impute_from_sibs module
	sibreg.bin.impute_from_sibs_hdf5 module
	sibreg.bin.impute_from_sibs_setup module
	sibreg.bin.impute_po module
	sibreg.bin.impute_runner module
	sibreg.bin.make_rdr_grms module
	sibreg.bin.pGWAS module
	sibreg.bin.poGWAS module
	sibreg.bin.preprocess_data module
	sibreg.bin.sGWAS module
	sibreg.bin.triGWAS module
	Module contents

	Indices and tables
	Python Module Index
	Index

